Rules for Safeguarding Good Scientific Practice
at the Leibniz Institute for Neurobiology (LIN)
and Procedures for Dealing with Scientific Misconduct

Preamble

Good scientific practice is essential for public confidence in the foundations and findings of science, it promotes scientific and economic progress and avoids waste of resources, unnecessary risks for people and nature, and misinformation of the public. It also protects the reputation and careers of scientists. All research institutions are called upon, within the framework of their own responsibilities, to protect science against forgeries and manipulation and to prevent the misuse of scientific results. The LIN and its members are aware of this responsibility.

With this objective, the management of the LIN issues the following rules. In addition, the “Leitlinie zur Sicherung guter wissenschaftlicher Praxis und zum Umgang mit Vorwürfen wissenschaftlichen Fehlverhaltens in der Leibniz-Gemeinschaft” (Guideline for safeguarding good scientific practice and for dealing with allegations of scientific misconduct in the Leibniz Association) \(^1\) and the code “Guidelines for Safeguarding Good Scientific Practice” of the Deutsche Forschungsgemeinschaft \(^2\) apply in their current version.

Compliance with these rules is an employment contract obligation at the LIN. These rules also apply to guest researchers, scholarship holders and all other employees without remuneration.

§ 1 Rules of good scientific practice

(1) Good scientific practice especially includes the following points:

a) working lege artis and always orienting oneself to the latest level of knowledge,

b) the critical and systematic verification of the validity and reproducibility of all results of experiments and other research designs,

c) recognition of the limits of the possible gain in scientific knowledge,

d) the full documentation of all methods and results of an experiment or study and the safe storage of all protocols and research data. So as to ensure the reproducibility and the possibility of subsequent use, test protocols should record the aim, conditions, performance and result of the experiment comprehensively and in a form that cannot be subsequently altered.

e) honesty in acknowledging the contributions of everyone involved and transparency in the disclosure of all sources of third-party funding, respecting the intellectual authorship of others and properly acknowledging all citations and borrowings,

f) the (joint) assumption of responsibility by the authors of scientific publications for the

\(^1\) https://www.leibniz-gemeinschaft.de/ueber-uns/gute-wissenschaftliche-praxis.html/

\(^2\) http://www.dfg.de/foerderung/grundlagen rahmenbedingungen/gwp/
content and presentation of the results and their discussion as a whole,

g) the assumption of leadership responsibility by the heads of structural units vis-à-vis scientists and the scientific support staff,

h) the provision of appropriate supervision in the preparation of academic qualification papers,

i) responsible cooperation within the LIN and within the scientific community,

j) always giving originality and quality priority over quantity as performance and evaluation criteria for promotions, recruitments, appointments and the allocation of funds. In addition to scientific performance, other aspects should be considered, such as commitment to teaching, academic self-administration, public relations work, knowledge and technology transfer, and contributions to society as a whole.

(2) Scientific publications need to describe scientific results and their derivation completely and comprehensively. Previously published results may only be included in later publications if they are essential for understanding the context of the publication and if reference is made to their first publication.

(3) Only those who have made a significant contribution to the design of the studies or experiments, to the preparation, analysis or interpretation of the data, and to the formulation of the manuscript, who have consented to the publication and to being an author, and have therefore assumed responsibility for it, may be designated as an author of an original scientific publication. The mere collection of data, financing of the investigations, management of the structural unit in which the research was carried out or reading and/or commenting on the manuscript do not substantiate authorship. So-called honorary authorships are therefore not permitted. The authorship regulations may be the subject of a cooperation agreement in advance.

(4) Research data must be stored accessibly for at least ten years after the date of its publication. The storage period commences on 01.01. of the calendar year following the year of publication. Data or data records for which there are central, public repositories should be made available to these repositories.

§ 2 Structures for safeguarding good scientific practice

(1) Responsibilities

The managers of the structural units are responsible for the management, supervision, conflict resolution and quality assurance of the LIN’s scientific work. They make appropriate arrangements to ensure that

- appropriate guidance and support are provided for young scientists / postdocs / doctoral candidates / students,

- the objectives of the research work are clearly recognisable for all participants and their tasks are clearly assigned,

- regular checks are carried out on compliance with the objectives.

(2) Documentation and storage of research data

a) All scientific investigations are to be fully documented, usually with laboratory records (manual or electronic), and research data are to be stored digitally. Electronic
records, original data, and accompanying metadata are stored on the LIN servers for at least 10 years.

b) When employees leave the LIN, the original data remains in the Institute; however, copies may be made and taken. The responsible supervisor documents the proper transfer of log books and electronic data on the control slip issued by the administration. On leaving the Institute, the supervisors may have access to their group’s research data and take copies of the data with them; all original data and its documentation stays at the LIN. Irrespective of this, copyright and patent claims apply.

(3) Training

It is to be ensured that the rules of good scientific practice are communicated, and special attention is paid to their observance in the training and specialist support / supervision of young scientists. The LIN undertakes to hold regular courses on good scientific practice, which are open to all scientific or scientific support staff. Participation at least once is obligatory for the scientific and scientific support staff.

(4) Ombudspersons

a) Two experienced scientific employees, ideally one male and one female scientist (internal ombudspersons) and an experienced external scientist, for example an active or former member of the scientific advisory board (external ombudsperson), should act as ombudspersons. The internal ombudspersons may not be members of the board, have no disciplinary rights, and have a permanent employment relationship with the LIN. The ombudspersons serve as a contact point in case of disagreements, suspicions and disputes concerning good scientific practice. The ombudspersons hold their office on an honorary basis, independently and without instructions. They endeavour to resolve disputes primarily within the Institute. However, the parties involved may insist that the external ombudsperson be called in for clarification. In addition, the supra-regional committee "Ombudsman fuer die Wissenschaft"3 and the central ombudsperson of the Leibniz Association4 are available.

b) The Institute’s internal ombudspersons and the external ombudsperson are elected in an anonymous election procedure from a group of candidates who have declared their willingness in advance. All LIN employees are eligible to vote. The management is responsible for conducting the secret ballot.

c) The term of office of the ombudspersons is five years; re-election is permitted. If the reliable performance of tasks no longer appears possible or if there is no longer confidence in the proper performance of tasks, the ombudspersons may also be deselected. An ombudsperson is deselected if at least two thirds of those eligible to vote agree. The management is responsible for conducting the secret ballot.

§ 3 Scientific misconduct

(1) Scientific misconduct includes incorrect statements and misrepresentations in scientific contexts in particular through:

a) the fabrication of data,

3 https://ombudsman-fuer-die-wissenschaft.de/
4 https://www.leibniz-gemeinschaft.de/ueber-una/gute-wissenschaftliche-praxis.html/
b) the falsification of data, e.g., by selecting desired or rejecting undesired results, using inappropriate evaluation methods, processing data without disclosing this, or manipulating a diagram or illustration,

c) incorrect information in publication lists, in a funding application or in a letter of application (including incorrect statements in a curriculum vitae, with regard to publication bodies and forthcoming publications),

d) Multiple publication of data or texts without appropriate disclosure.

(2) Scientific misconduct includes the violation of intellectual property rights, in particular:

a) with regard to a copyrighted work by others or to substantial scientific findings, hypotheses, theories or research approaches of others:

- the unauthorised appropriation or other utilisation of passages of text without appropriate acknowledgement of the authorship (plagiarism),
- the exploitation of research approaches and ideas without consent, in particular as a reviewer (theft of ideas),
- the use or publication of research data and results without the consent of the author and without recognition of the co-authorship,
- the unjustified claim or unjustified acceptance of scientific authorship or co-authorship,
- the falsification of the content or unauthorised publication and unauthorised disclosure to third parties, provided the work, the result, the hypothesis, the theory or the research approach has not yet been published;

b) claiming the authorship or co-authorship of another person without their consent.

(3) Scientific misconduct also includes the unfair obstruction of the research activities of others, including damaging, destroying or manipulating research set-ups, equipment, documents, hardware, software, chemicals or other items required by others to conduct an experiment.

(4) The deletion of research data constitutes scientific misconduct if this violates statutory provisions or recognised principles of scientific work.

(5) The neglect of scientific leadership responsibility and supervision duties by the structural unit or institute management in a way that promotes violations of good scientific practice is scientific misconduct.

(6) Co-authorship by accepting involvement in a falsified publication is scientific misconduct.

(7) The deliberate hindrance of an attempted publication by an employee without valid scientific reasons by the group management is scientific misconduct.

(8) The grossly incorrect, deliberately false or misleading expert evaluation of the research activities of others and the compilation of biased evaluations is scientific misconduct.

(9) The deliberate pretence of carrying out or using quality assurance measures and procedures (e.g., faking a peer review) is scientific misconduct.

§ 4 Investigation of allegations of scientific misconduct

(1) In case of concrete suspicions of scientific misconduct, the internal ombudspersons of
the LIN or, if applicable, the external ombudsperson are to be informed first. They are to examine the allegations of scientific misconduct. If the suspicion of scientific misconduct is confirmed, the ombudspersons inform the management of the LIN, which sets up a suitable committee of enquiry consisting of at least three experienced scientists from impartial structural units as well as the two internal ombudspersons to clarify the scientific facts of the case.

(2) If a scientific director is suspected of misconduct, the chairperson of the scientific advisory board is to be informed, who may then involve the chairperson of the board of trustees.

(3) The facts on which the suspicion expressed is based are to be investigated by the committee of enquiry. The circumstances are to be precisely established without delay. The investigations are to be conducted in strict compliance with the confidentiality and protection of all parties concerned.

(4) The person suspected of misconduct is to be informed of the suspicion promptly after the investigation, stating all incriminating facts and evidence. The suspected person has the opportunity to make a statement within a reasonable period. The name of the informant will not be disclosed at this stage of the proceedings without his/her consent.

(5) After receipt of the statement by the suspected person or expiry of the period set, on the recommendation of the committee of enquiry, the management or the chairman of the scientific advisory board is to promptly make a decision as to whether the findings to date have invalidated the suspicion of misconduct, whether the suspicion has increased or whether misconduct is regarded as proven. The decision is to be set down in writing and made known to the ombudsperson, the LIN board of directors, the scientific advisory board and the LIN board of trustees.

(6) If, in the course of such an examination procedure, it is found that final clarification of the allegations is not possible at the LIN level or that implementation of the procedure is prevented due to exceptional circumstances, the LIN ombudspersons are to submit the case to the central ombudsperson of the Leibniz Association. The central ombudsperson then proceeds in accordance with the “Leitlinie zur Sicherung guter wissenschaftlicher Praxis und zum Umgang mit Vorwürfen wissenschaftlichen Fehlverhaltens in der Leibniz-Gemeinschaft” (Guideline for safeguarding good scientific practice and for dealing with allegations of scientific misconduct in the Leibniz Association) of 29.11.2018 (Paragraphs 5-7) in its current version (see page 1).

§ 5 LIN-internal procedure for proven misconduct

(1) If scientific misconduct is deemed to be proven, the management and/or the chairman of the scientific advisory board are to decide on the necessity of further measures at their dutiful discretion.

(2) Depending on the circumstances of the individual case and, in particular, the severity of the misconduct established, sanctions are possible from various fields of law, if necessary, also cumulatively, e.g.,

 a) Consequences under employment law
 - disciplinary warning
 - constructive dismissal
contract termination

b) Consequences under civil law
- issuing of a ban on entering the premises
- claims for restitution against the person concerned, e.g., for the surrender of stolen scientific material
- claims for elimination and injunctive relief under copyright law, personality rights, patent law, competition law
- claims for reimbursement, e.g., of scholarships or funding
- claims for damages by the Institute or third parties

c) Consequences under criminal law

(3) Scientific publications which contain errors due to proven scientific misconduct are to be withdrawn stating the reasons. In less severe cases, incorrect data is to be corrected by the publication of an erratum/corrigendum. Cooperation partners are to be informed where necessary in an appropriate form. The corresponding author or any co-authors involved are obliged to undertake this; if they do not take action within a reasonable period of time, the management is to initiate the appropriate measures within its capabilities.

(4) In cases of serious scientific misconduct, the management is to inform other cooperation partners, research institutions or research organisations concerned, as well as supervisory bodies and funding organisations if necessary.

(5) In order to protect third parties, to maintain confidence in scientific integrity, to restore the LIN's scientific reputation, to prevent consequential damage and in the general public interest, the management may be obliged to inform affected third parties and the public.

(6) If scientific misconduct is considered proven, the management of the respective university may also recommend examining academic consequences, such as the withdrawal of the doctoral degree or the withdrawal of the authorisation to teach.

Magdeburg, January 2020

Prof. Dr. Stefan Remy
Managing Scientific Director

Thekla Thiel
Administrative Director