We are interested in basic aspects of hearing, from perception to receptor physiology. We explore mechanisms underlying sound detection and discrimination. We are also interested in developing suitable measures of accuracy and precision for discrimination and matching tasks, because existing textbook measures often fail to separate the concepts of accuracy and precision, such as when stimulus parameters can attain only positive real values. These insights have widespread implications for many fields.

We also analyze the timing of auditory-nerve-fiber spikes, the first possible precursors of the ‘sensory events’ involved in perceptual detection and discrimination. We developed the first model to account for all major aspects of spike timing in mammalian ANFs during spontaneous activity. The model will help better understand spike timing during sound-driven activity, including phase locking.

  • Head


    Peter Heil studied biology at the Technical University Darmstadt. 1983 Diploma; 1989 Ph.D.; 1993 Habilitation.

    Extended research visits at Ponce School of Medicine, Puerto Rico, USA; Department of Zoology, Tel-Aviv University, Tel-Aviv, ISRAEL; Low Temperature Laboratory, Helsinki University of Technology, FINLAND; Department of Psychology, Monash University, AUSTRALIA.

    1990-1991: Postdoc with Dexter R.F. Irvine, Department of Psychology, Monash University, AUSTRALIA (Feodor-Lynen-Scholarship, Alexander-von-Humboldt Foundation);

    1995-1998: Principal Investigator in the Department of Psychology, Monash University, AUSTRALIA (NH&MRC Australia).

    1998-present: Leibniz Institute for Neurobiology Magdeburg, Germany. 2002-present: Ombudsman at LIN.

    2016-present: Contributing Member of Faculty1000. Main research interest: hearing. Currently 75 papers in peer-reviewed journals, eight book chapters.


  • Members


    Prof. Dr. Peter Heil+49-391-6263-94441peter.heil@lin-magdeburg.de
    PhD student  
    Adam J. Peterson+49-391-6263-94381adam.peterson@lin-magdeburg.de
    Technical staff member  
    Gabriele Schöps+49-391-6263-95461gabriele.schoeps@lin-magdeburg.de
    Dr. Björn Friedrich  
  • Projects


    • Modeling spontaneous activity of auditory-nerve fibers
    • Modeling phase locking of auditory-nerve fibers
    • Measurements and modeling of human detection thresholds for sounds in quiet (including single monaural tones, dichotic and diotic tones, tone sequences, and tone complexes)
    • Measurements and modeling of human monaural and interaural level difference thresholds
    • Measurements and modeling of simple reaction times of humans to tones of various envelopes and levels
  • Third Party Funds

    Third Party Funds

    Deutsche Forschungsgemeinschaft
    “Mechanisms of phase-locking of auditory-nerve fibers: a modelling approach”


  • Publications



    Peterson AJ, Heil P (2019) Phase locking of auditory-nerve fibers reveals stereotyped distortions and an exponential transfer function with a level-dependent slope. Journal of Neuroscience 39:4077-4099; doi: 10.1523/JNEUROSCI.1801-18.2019

    Huang Y, Heil P, Brosch M (2019) Associations between sounds and actions in early auditory cortex of nonhuman primates. eLife 8:e43281. DOI:10.7554/eLife.43281



    Peterson AJ, Heil P (2018) A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hearing Research 363:1-27

    Peterson AJ, Huet A, Bourien J, Puel J-L, Heil P (2018) Recovery of auditory-nerve-fiber spike amplitude under natural excitation conditions. Hearing Research 370:248-263



    Heil P, Matysiak M (2017) Absolute auditory threshold: testing the absolute. European Journal of Neuroscience (doi:10.1111/ejn.13765)

    Friedrich B, Heil P (2017) Onset-duration matching of acoustic stimuli revisited: conventional arithmetic versus proposed geometric measures of accuracy and precision. Frontiers in Psychology 7: doi: 10.3389/fpsyg.2016.02013

    Heil P, Peterson AJ (2017) Spike timing in auditory-nerve fibers during spontaneous activity and phase locking. Synapse 71:5-36

    Heil P, Matysiak M, Neubauer H (2017) A probabilistic Poisson-based model accounts for an extensive set of absolute auditory threshold measurements. Hearing Research 353:135-161



    Huang Y, Matysiak A, Heil P, König R, Brosch M (2016) Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates. eLife 5:e15441. DOI:10.7554/eLife.15441 (24 pages plus Supplementary Material) (CBBS Best Paper of the Year 2016)



    König R, Matysiak A, Kordecki W, Sielużycki C, Zacharias N, Heil P (2015) Averaging auditory evoked MEG and EEG responses: A critical discussion. European Journal of Neuroscience 41:631-640

    Budinger E, Brechmann A, Brosch M, Heil P, König R, Ohl FW, Scheich H (2015) Auditory Cortex – towards a synthesis of human and animal research. European Journal of Neuroscience 41:515-517 (Editorial)

    Heil P, Peterson AJ (2015) Basic response properties of auditory nerve fibers: a review. Cell and Tissue Research 361:129-158 (invited review; featured in Faculty1000 by Ruth Anne Eatock)

    Deike S, Heil P, Böckmann-Barthel M, Brechmann A (2015) Decision making and ambiguity in auditory stream segregation. Frontiers in Psychology 9:266. DOI: 10.3389/fnins.2015.00266 (6 pages)



    Heil P (2014) Towards a unifying basis of auditory thresholds: binaural summation. Journal of the Association for Research in Otolaryngology 15:219-234 (Cover illustration)

    Heil P (2014) Auditory nerve response, afferent signals. In: Encyclopedia of Computational Neuroscience. (Jaeger D, Jung R, eds). Berlin: Springer. Article ID: 348489, Chapter ID: 424

    Peterson AJ, Irvine DRF, Heil P (2014) A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers. Journal of Neuroscience 34:15097-15109



    Heil P, Verhey JL, Zoefel, B. (2013) Modelling detection thresholds for sounds repeated at different delays. Hearing Research 296:83-95

    Pohl NU, Slabbekorn H, Neubauer H, Heil P, Klump GM, Langemann U (2013) Why longer song elements are easier to detect: threshold level-duration functions in the great tit and comparison with human data. Journal of Comparative Physiology A 199:239-252

    Matysiak A, Kordecki W, Sielużycki C, Zacharias N, Heil P, König R (2013) Variance stabilization for computing grand means in MEG and EEG. Psychophysiology 50:627-639

    Zoefel B, Heil P (2013) Detection of near-threshold sounds is independent of EEG phase. Frontiers in Psychology 4:262. doi: 10.3389/fpsyg.2013.0026 (17 pages)

    Heil P, Neubauer H, Tetschke M, Irvine DRF (2013) A probabilistic model of absolute auditory thresholds and its possible physiological basis. Advances in Experimental Medicine and Biology 787:21-29



    Zacharias N, König R, Heil P (2012) Stimulation-history effects on the M100 revealed by its differential dependence on the stimulus onset interval. Psychophysiology 49:909-919

    Deike S, Heil P, Böckmann-Barthel M, Brechmann A (2012) The build-up of auditory stream segregation: a different perspective.Frontiers in Psychology 3:461. DOI: 10.3389/fpsyg.2012.00461



    Brechmann A, Brosch M, Budinger E, Heil P, König R, Ohl FW, Scheich H (2011) Auditory Cortex – Current concepts in human and animal research. Hearing Research 271:1-2 (Editorial)

    Zacharias N, Sielużycki C, Kordecki W, König R, Heil P (2011) The M100 component of evoked magnetic fields differs by scaling factors: implications for signal averaging. Psychophysiology 48:1069-1082

    Heil P, Neubauer H, Irvine DRF (2011) An improved model for the rate-level functions of auditory-nerve fibers. Journal of Neuroscience 31:15424-15347



    Zacharias N, Sielużycki C, Matysiak A, König R, Heil P (2010) Relevant observations for averaging stimulus evoked magnetic fields across trials and across subjects. IFBME Proceedings 28:179-182

    Heil P, Neubauer H, Irvine DRF (2010) A new model for the shapes of rate-level functions of auditory-nerve fibers. Proceedings of the 20th International Congress on Acoustics 4:3156-3163

    Heil P, Neubauer H (2010) Summing across different active zones can explain the quasi-linear Ca2+-dependencies of exocytosis by receptor cells. Frontiers in Synaptic Neuroscience 2: 148. doi: 10.3389/fnsyn.2010.00148

  • Teaching


    Prof. Dr. Peter Heil is involved in the education of students of the Master's program “Integrative Neuroscience” at OVGU Magdeburg.



Diese Seite teilen: