LIN Staff

Prof. Dr. Frank Angenstein

Guest

Combinatorial NeuroImaging

Leibniz Institute for Neurobiology
Brenneckestr. 6
39118 Magdeburg
Germany
Phone: +49 391 6724-537
Email: Frank.Angenstein@lin-magdeburg.de
ORCID: 0000-0003-1157-714X

  • Publications

    Publications

    Galldiks N, Angenstein F, Werner J-M, Bauer EK, Gutsche R, Fink GR, Langen K-J, Lohmann P. 2022. Use of advanced neuroimaging and artificial intelligence in meningiomas. Brain pathology. 32(2):Article e13015. https://doi.org/10.1111/bpa.13015

    Strauch C, Hoang T-H, Angenstein F, Manahan-Vaughan D. 2022. Olfactory Information Storage Engages Subcortical and Cortical Brain Regions That Support Valence Determination. Cerebral Cortex. 32(4):689-708. https://doi.org/10.1093/cercor/bhab226

    Arboit A, Krautwald K, Angenstein F. 2022. The cholinergic system modulates negative BOLD responses in the prefrontal cortex once electrical perforant pathway stimulation triggers neuronal afterdischarges in the hippocampus. Journal of Cerebral Blood Flow and Metabolism. 42(2):364-380. https://doi.org/10.1177/0271678X211049820

    Arboit A, Ku S-P, Krautwald K, Angenstein F. 2021. Brief neuronal afterdischarges in the rat hippocampus lead to transient changes in oscillatory activity and to a very long-lasting decline in BOLD signals without inducing a hypoxic state. NeuroImage. 245:Article 118769. https://doi.org/10.1016/j.neuroimage.2021.118769

    Waldt N, Kesseler C, Fala P, John P, Kirches E, Angenstein F, Mawrin C. 2021. Crispr/Cas-based modeling of NF2 loss in meningioma cells. Journal of Neuroscience Methods. 356:Article 109141. https://doi.org/10.1016/j.jneumeth.2021.109141

    Helbing C, Angenstein F. 2020. Frequency-dependent electrical stimulation of fimbria-fornix preferentially affects the mesolimbic dopamine system or prefrontal cortex. Brain Stimulation. 13(3):753-764. https://doi.org/10.1016/j.brs.2020.02.026

    Angenstein F. 2019. The role of ongoing neuronal activity for baseline and stimulus-induced BOLD signals in the rat hippocampus. NeuroImage. 202:Article 116082. https://doi.org/10.1016/j.neuroimage.2019.116082

    Krautwald K, Mahnke L, Angenstein F. 2019. Electrical Stimulation of the Lateral Entorhinal Cortex Causes a Frequency-Specific BOLD Response Pattern in the Rat Brain. Frontiers in Neuroscience. 13(MAY):Article 539. https://doi.org/10.3389/fnins.2019.00539

    Bovet-Carmona M, Krautwald K, Menigoz A, Vennekens R, Balschun D, Angenstein F. 2019. Low frequency pulse stimulation of Schaffer collaterals in Trpm4−/− knockout rats differently affects baseline BOLD signals in target regions of the right hippocampus but not BOLD responses at the site of stimulation. NeuroImage. 188:347-356. https://doi.org/10.1016/j.neuroimage.2018.12.020

    Bovet-Carmona M, Menigoz A, Pinto S, Tambuyzer T, Krautwald K, Voets T, Aerts JM, Angenstein F, Vennekens R, Balschun D. 2018. Disentangling the role of TRPM4 in hippocampus-dependent plasticity and learning: an electrophysiological, behavioral and FMRI approach. Brain Structure and Function. 223(8):3557-3576. https://doi.org/10.1007/s00429-018-1706-1

    Annamneedi A, Caliskan G, Müller S, Montag D, Budinger E, Angenstein F, Fejtova A, Tischmeyer W, Gundelfinger ED, Stork O. 2018. Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance. Brain Structure and Function. 223(7):3423-3445. https://doi.org/10.1007/s00429-018-1692-3

    Brocka M, Helbing C, Vincenz D, Scherf T, Montag D, Goldschmidt J, Angenstein F, Lippert M. 2018. Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits. NeuroImage. 177:88-97. https://doi.org/10.1016/j.neuroimage.2018.04.059

    Henschke JU, Oelschlegel AM, Angenstein F, Ohl FW, Goldschmidt J, Kanold PO, Budinger E. 2018. Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices. Brain Structure and Function. 223(3):1165-1190. https://doi.org/10.1007/s00429-017-1549-1

    Angenstein F. 2018. A Combined fMRI and Electrophysiological Approach to Study Signal Processing and Signal Propagation in the Rodent Hippocampus. Manahan-Vaughan D, editor. In Handbook of in Vivo Neural Plasticity Techniques. Elsevier. pp. 425-439. (Handbook of Behavioral Neuroscience). https://doi.org/10.1016/B978-0-12-812028-6.00023-9

    Pöttker B, Stöber F, Hummel R, Angenstein F, Radyushkin K, Goldschmidt J, Schäfer MKE. 2017. Traumatic brain injury causes long-term behavioral changes related to region-specific increases of cerebral blood flow. Brain Structure and Function. 222(9):4005-4021. https://doi.org/10.1007/s00429-017-1452-9

    Helbing C, Tischmeyer W, Angenstein F. 2017. Late effect of dopamine D1/5 receptor activation on stimulus-induced BOLD responses in the hippocampus and its target regions depends on the history of previous stimulations. NeuroImage. 152:119-129. https://doi.org/10.1016/j.neuroimage.2017.02.077

    Scherf T, Angenstein F. 2017. Hippocampal CA3 activation alleviates fMRI-BOLD responses in the rat prefrontal cortex induced by electrical VTA stimulation. PLoS ONE. 12(2):Article e0172926. https://doi.org/10.1371/journal.pone.0172926

    Riemann S, Helbing C, Angenstein F. 2017. From unspecific to adjusted, how the BOLD response in the rat hippocampus develops during consecutive stimulations. Journal of Cerebral Blood Flow and Metabolism. 37(2):590-604. https://doi.org/10.1177/0271678X16634715

    Bhattacharya S, Herrera-Molina R, Sabanov V, Ahmed T, Iscru E, Stöber F, Richter K, Fischer KD, Angenstein F, Goldschmidt J, et al. 2017. Genetically induced retrograde amnesia of associative memories after neuroplastin ablation. Biological Psychiatry. 81(2):124-135. https://doi.org/10.1016/j.biopsych.2016.03.2107

    Helbing C, Brocka M, Scherf T, Lippert MT, Angenstein F. 2016. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway. Journal of Cerebral Blood Flow and Metabolism. 36(12):2177-2193. https://doi.org/10.1177/0271678X15615535

    Radtke-Schuller S, Schuller G, Angenstein F, Grosser OS, Goldschmidt J, Budinger E. 2016. Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Structure and Function. 221 Suppl 1(Suppl. 1):1-272. https://doi.org/10.1007/s00429-016-1259-0

    Spilker C, Nullmeier S, Grochowska KM, Schumacher A, Butnaru I, Macharadze T, Gomes GM, YuanXiang P, Bayraktar G, Rodenstein C, et al. 2016. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics. 12(3):Article e1005907. https://doi.org/10.1371/journal.pgen.1005907

    Scherf T, Angenstein F. 2015. Postsynaptic and spiking activity of pyramidal cells, the principal neurons in the rat hippocampal CA1 region, does not control the resultant BOLD response: A combined electrophysiologic and fMRI approach. Journal of Cerebral Blood Flow and Metabolism. 35(4):565-575. https://doi.org/10.1038/jcbfm.2014.252

    Kolodziej A, Lippert M, Angenstein F, Neubert J, Pethe A, Grosser OS, Amthauer H, Schroeder UH, Reymann KG, Scheich H, et al. 2014. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice. NeuroImage. 103:171-180. https://doi.org/10.1016/j.neuroimage.2014.09.023

    Szabó B, Török J, Somfai E, Wegner S, Stannarius R, Böse A, Rose G, Angenstein F, Börzsönyi T. 2014. Evolution of shear zones in granular materials. Physical Review E. 90(3):Article 032205. https://doi.org/10.1103/PhysRevE.90.032205

    Angenstein F. 2014. The actual intrinsic excitability of granular cells determines the ruling neurovascular coupling mechanism in the rat dentate gyrus. Journal of Neuroscience. 34(25):8529-8545. https://doi.org/10.1523/JNEUROSCI.0472-14.2014

    Hunger M, Budinger E, Zhong K, Angenstein F. 2014. Visualization of acute focal lesions in rats with experimental autoimmune encephalomyelitis by magnetic nanoparticles, comparing different MRI sequences including phase imaging. Journal of Magnetic Resonance Imaging. 39(5):1126-1135. https://doi.org/10.1002/jmri.24280

    Kliese N, Gobrecht P, Pachow D, Andrae N, Wilisch-Neumann A, Kirches E, Riek-Burchardt M, Angenstein F, Reifenberger G, Riemenschneider M, et al. 2013. MiRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells. Oncogene. 32(39):4712-4720. https://doi.org/10.1038/onc.2012.468

    Krautwald K, Min HK, Lee KH, Angenstein F. 2013. Synchronized electrical stimulation of the rat medial forebrain bundle and perforant pathway generates an additive BOLD response in the nucleus accumbens and prefrontal cortex. NeuroImage. 77:14-25. https://doi.org/10.1016/j.neuroimage.2013.03.046

    Angenstein F, Krautwald K, Wetzel W, Scheich H. 2013. Perforant pathway stimulation as a conditioned stimulus for active avoidance learning triggers BOLD responses in various target regions of the hippocampus: A combined fMRI and electrophysiological study. NeuroImage. 75:213-227. https://doi.org/10.1016/j.neuroimage.2013.03.007

    Pachow D, Andrae N, Kliese N, Angenstein F, Stork O, Wilisch-Neumann A, Kirches E, Mawrin C. 2013. MTORC1 inhibitors suppress meningioma growth in mouse models. Clinical Cancer Research. 19(5):1180-1189. https://doi.org/10.1158/1078-0432.CCR-12-1904

    Helbing C, Werner G, Angenstein F. 2013. Variations in the temporal pattern of perforant pathway stimulation control the activity in the mesolimbic pathway. NeuroImage. 64(1):43-60. https://doi.org/10.1016/j.neuroimage.2012.09.001

    Haroon F, Händel U, Angenstein F, Goldschmidt J, Kreutzmann P, Lison H, Fischer KD, Scheich H, Wetzel W, Schlüter D, et al. 2012. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS ONE. 7(4):e35516. https://doi.org/10.1371/journal.pone.0035516

    Tiede R, Krautwald K, Fincke A, Angenstein F. 2012. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing. Journal of Cerebral Blood Flow and Metabolism. 32(3):570-584. https://doi.org/10.1038/jcbfm.2011.182

    Krautwald K, Angenstein F. 2012. Low frequency stimulation of the perforant pathway generates anesthesia-specific variations in neural activity and BOLD responses in the rat dentate gyrus. Journal of Cerebral Blood Flow and Metabolism. 32(2):291-305. https://doi.org/10.1038/jcbfm.2011.126

    Schreiber S, Bueche CZ, Garz C, Kropf S, Angenstein F, Goldschmidt J, Neumann J, Heinze HJ, Goertler M, Reymann KG, et al. 2012. The pathologic cascade of cerebrovascular lesions in SHRSP: Is erythrocyte accumulation an early phase. Journal of Cerebral Blood Flow and Metabolism. 32(2):278-290. https://doi.org/10.1038/jcbfm.2011.122

    Heyden A, Ionescu MCS, Romorini S, Kracht B, Ghiglieri V, Calabresi P, Seidenbecher C, Angenstein F, Gundelfinger ED. 2011. Hippocampal enlargement in Bassoon-mutant mice is associated with enhanced neurogenesis, reduced apoptosis, and abnormal BDNF levels. Cell and Tissue Research. 346(1):11-26. https://doi.org/10.1007/s00441-011-1233-3

    Börzsönyi T, Unger T, Szabó B, Wegner S, Angenstein F, Stannarius R. 2011. Reflection and exclusion of shear zones in inhomogeneous granular materials. Soft Matter. 7(18):8330-8336. https://doi.org/10.1039/c1sm05762f

    Koch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, Stellmacher A, Ahuja R, Grimm J, Schüler S, Müller A, et al. 2011. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin i. EMBO Journal. 30(24):4955-4969. https://doi.org/10.1038/emboj.2011.339

    Angenstein F, Krautwald K, Scheich H. 2010. The current functional state of local neuronal circuits controls the magnitude of a BOLD response to incoming stimuli. NeuroImage. 50(4):1364-1375. https://doi.org/10.1016/j.neuroimage.2010.01.070

    Fischer D, Finger T, Angenstein F, Stannarius R. 2009. Diffusive and subdiffusive axial transport of granular material in rotating mixers. Physical Review E. 80(6):Article 061302. https://doi.org/10.1103/PhysRevE.80.061302

    Frisch C, Hüsch K, Angenstein F, Kudin A, Kunz W, Elger CE, Helmstaedter C. 2009. Dose-dependent memory effects and cerebral volume changes after in utero exposure to valproate in the rat. Epilepsia. 50(6):1432-1441. https://doi.org/10.1111/j.1528-1167.2008.01943.x

    Behr B, Schnabel R, Mirastschijski U, Ibrahim B, Angenstein F, Schneider W. 2009. Magnetic resonance imaging monitoring of peripheral nerve regeneration following neurotmesis at 4.7 tesla. Plastic and Reconstructive Surgery. 123(6):1778-1788. https://doi.org/10.1097/PRS.0b013e3181a3f343

    Angenstein F, Kammerer E, Scheich H. 2009. The BOLD response in the rat hippocampus depends rather on local processing of signals than on the input or output activity. A combined functional MRI and electrophysiological study. Journal of Neuroscience. 29(8):2428-2439. https://doi.org/10.1523/JNEUROSCI.5015-08.2009

    Heyden A, Angenstein F, Sallaz M, Seidenbecher C, Montag D. 2008. Abnormal axonal guidance and brain anatomy in mouse mutants for the cell recognition molecules close homolog of L1 and NgCAM-related cell adhesion molecule. Neuroscience. 155(1):221-233. https://doi.org/10.1016/j.neuroscience.2008.04.080

    Angenstein F, Hilfert L, Zuschratter W, Altrock WD, Niessen HG, Gundelfinger ED. 2008. Morphological and metabolic changes in the cortex of mice lacking the functional presynaptic active zone protein bassoon: A combined 1H-NMR spectroscopy and histochemical study. Cerebral Cortex. 18(4):890-897. https://doi.org/10.1093/cercor/bhm122

    Angenstein F, Kammerer E, Niessen HG, Frey JU, Scheich H, Frey S. 2007. Frequency-dependent activation pattern in the rat hippocampus, a simultaneous electrophysiological and fMRI study. NeuroImage. 38(1):150-163. https://doi.org/10.1016/j.neuroimage.2007.07.022

    Niessen HG, Debska-Vielhaber G, Sander K, Angenstein F, Ludolph AC, Hilfert L, Willker W, Leibfritz D, Heinze HJ, Kunz WS, et al. 2007. Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis. European Journal of Neuroscience. 25(6):1669-1677. https://doi.org/10.1111/j.1460-9568.2007.05415.x

    Angenstein F, Niessen HG, Goldschmidt J, Lison H, Altrock WD, Gundelfinger ED, Scheich H. 2007. Manganese-enhanced MRI reveals structural and functional changes in the cortex of bassoon mutant mice. Cerebral Cortex. 17(1):28-36. https://doi.org/10.1093/cercor/bhj121

    Dudanova I, Sedej S, Ahmad M, Masius H, Sargsyan V, Zhang W, Riedel D, Angenstein F, Schild D, Rupnik M, et al. 2006. Important contribution of alpha-neurexins to Ca2+-triggered exocytosis of secretory granules. Journal of Neuroscience. 26(41):10599-10613. https://doi.org/10.1523/JNEUROSCI.1913-06.2006

    Niessen HG, Angenstein F, Sander K, Kunz WS, Teuchert M, Ludolph AC, Heinze HJ, Scheich H, Vielhaber S. 2006. In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient. Experimental Neurology. 201(2):293-300. https://doi.org/10.1016/j.expneurol.2006.04.007

    Deutscher A, Niessen HG, Angenstein F, Goldschmidt J, Scheich H, Schulze H. 2006. Comparison of estimates for volumes of brain ablations derived from structural MRI and classical histology. Journal of Neuroscience Methods. 156(1-2):136-139. https://doi.org/10.1016/j.jneumeth.2006.02.009

    Niessen HG, Angenstein F, Vielhaber S, Frisch C, Kudin A, Elger CE, Heinze HJ, Scheich H, Kunz WS. 2005. Volumetric magnetic resonance imaging of functionally relevant structural alterations in chronic epilepsy after pilocarpine-induced status epilepticus in rats. Epilepsia. 46(7):1021-1026. https://doi.org/10.1111/j.1528-1167.2005.60704.x

    Angenstein F, Niessen HG, Goldschmidt J, Vielhaber S, Ludolph AC, Scheich H. 2004. Age-dependent changes in MRI of motor brain stem nuclei in a mouse model of ALS. NeuroReport. 15(14):2271-2274. https://doi.org/10.1097/00001756-200410050-00026

    Angenstein F, Riedel G, Reymann KG, Staak S. 1999. Transient translocation of protein kinase Cγ in hippocampal long-term potentiation depends on activation of metabotropic glutamate receptors. Neuroscience. 93(4):1289-1295. https://doi.org/10.1016/S0306-4522(99)00315-2

    Angenstein F, Buchner K, Staak S. 1999. Age-dependent differences in glutamate-induced phosphorylation systems in rat hippocampal slices. Hippocampus. 9(2):173-185. https://doi.org/10.1002/(SICI)1098-1063(1999)9:2<173::AID-HIPO8>3.0.CO;2-K

    Smalla KH, Angenstein F, Richter K, Gundelfinger ED, Staak S. 1998. Identification of fucose α(1-2) galactose epitope-containing glycoproteins from rat hippocampus. NeuroReport. 9(5):813-817. https://doi.org/10.1097/00001756-199803300-00009

    Angenstein F, Staak S. 1997. Receptor-mediated activation of protein kinase C in hippocampal long-term potentiation: Facts, problems and implications. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 21(3):427-454. https://doi.org/10.1016/S0278-5846(97)00012-2

    Angenstein F, Hirschfelder M, Staak S. 1997. Activation of metabotropic glutamate receptors increases endogenous protein kinase C substrate phosphorylation in adult hippocampal slices. Brain Research. 745(1-2):46-54. https://doi.org/10.1016/S0006-8993(96)01129-8

    Staak S, Behnisch T, Angenstein F. 1995. Hippocampal long-term potentiation: transient increase but no persistent translocation of protein kinase C isoenzymes α and β. Brain Research. 682(1-2):55-62. https://doi.org/10.1016/0006-8993(95)00319-L

    Angenstein F, Riedel G, Staak S, Reymann KG. 1994. Hippocampal long-term potentiation in vivo induces translocation of protein kinase Cγ. NeuroReport. 5(4):381-384.

    Angenstein F, Matthies H, Staeck S, Reymann KG, Staak S. 1992. The maintenance of hippocampal long-term potentiation is paralleled by a dopamine-dependent increase in glycoprotein fucosylation. Neurochemistry International. 21(3):403-408. https://doi.org/10.1016/0197-0186(92)90191-S

    Angenstein F, Staak S, Jork R. 1992. Phorbol ester-induced changes in rat hippocampal glycoprotein fucosylation. Neuroscience Letters. 135(2):269-272. https://doi.org/10.1016/0304-3940(92)90453-E
Share this page: