LIN Staff
Prof. Dr. Janelle Pakan
Head of Research Group
Neural Circuits and Network Dynamics
Leibniz Institute for NeurobiologyBrenneckestr. 6
39118 Magdeburg
Germany
Phone: +49 391 6263 93471
Email: Janelle.Pakan@lin-magdeburg.de
ORCID: 0000-0001-9384-8067
- Publications
Publications
Liu P, Doehler J, Henschke JU, Northall A, Knaf-Serian A, Loaiza-Carvajal LC, Budinger E, Schwarzkopf DS, Speck O, Pakan JMP, et al. 2025. Layer-specific changes in sensory cortex across the lifespan in mice and humans. Nature Neuroscience. 28(9):1978-1989. https://doi.org/10.1038/s41593-025-02013-1Jia H, Wang M, Pakan JMP, Li SC, Chen X. 2025. Burst firing represents learned composite stimuli in primary sensory cortices. Current Opinion in Neurobiology. 93:Article 103039. https://doi.org/10.1016/j.conb.2025.103039Liu P, Doehler J, Henschke JU, Northall A, Serian A, Loaiza-Carvajal LC, Budinger E, Schwarzkopf DS, Speck O, Pakan JMP, et al. 2024. Cortical sensory aging is layer-specific. bioRxiv. (bioRxiv). https://doi.org/10.1101/2023.12.01.567841Uhlířová H, Čižmár T, Pakan JMP, Gomes A. 2024. Special Section Guest Editorial: Exploiting Complex Media Photonics to Illuminate Brain's Hidden Depth. Neurophotonics. 11(Suppl 1):Article S11501. https://doi.org/10.1117/1.NPh.11.S1.S11501Wendlandt TA, Wenk P, Henschke JU, Michalek A, Noesselt T, Pakan JMP, Budinger E. 2024. Neural networks representing temporal expectation in mice. bioRxiv. (bioRxiv). https://doi.org/10.1101/2024.04.25.589683Mocellin P, Barnstedt O, Luxem K, Kaneko H, Vieweg S, Henschke JU, Dalügge D, Fuhrmann F, Karpova A, Pakan JMP, et al. 2024. A septal-ventral tegmental area circuit drives exploratory behavior. Neuron. 112(6):1020-1032.e7. https://doi.org/10.1016/j.neuron.2023.12.016Du Y, Dylda E, Stibůrek M, Gomes AD, Turtaev S, Pakan JMP, Čižmár T. 2024. Advancing the path to in-vivo imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy. Neurophotonics. 11(Suppl 1):Article S11506. https://doi.org/10.1117/1.NPh.11.S1.S11506Li R, Huang J, Li L, Zhao Z, Liang S, Liang S, Wang M, Liao X, Lyu J, Zhou Z, et al. 2023. Holistic bursting cells store long-term memory in auditory cortex. Nature Communications. 14(1):Article 8090. https://doi.org/10.1038/s41467-023-43620-5Cangalaya C, Wegmann S, Sun W, Diez L, Gottfried A, Richter K, Stoyanov S, Pakan J, Fischer KD, Dityatev A. 2023. Real-time mechanisms of exacerbated synaptic remodeling by microglia in acute models of systemic inflammation and tauopathy. Brain, Behavior, and Immunity. 110:245-259. https://doi.org/10.1016/j.bbi.2023.02.023Huang W, Wang Y, Qin J, He C, Li Y, Wang Y, Li M, Lyu J, Zhou Z, Jia H, et al. 2023. A corticostriatal projection for sound-evoked and anticipatory motor behavior following temporal expectation. NeuroReport. 34(1):1-8. https://doi.org/10.1097/WNR.0000000000001851Henschke JU, Pakan JMP. 2023. Engaging distributed cortical and cerebellar networks through motor execution, observation, and imagery. Frontiers in Systems Neuroscience. 17:Article 1165307. https://doi.org/10.3389/fnsys.2023.1165307Tang J, Xue R, Wang Y, Li M, Jia H, Pakan JMP, Li L, Chen X, Li X. 2022. Optical Fiber-Based Recording of Climbing Fiber Ca2+ Signals in Freely Behaving Mice. Biology. 11(6):Article 907. https://doi.org/10.3390/biology11060907Pakan JMP, Tang Y. 2022. Multiphoton Microscopes Go Big: Large-Scale In Vivo Imaging of Neural Dynamics. BME Frontiers. 2022:Article 9803780. https://doi.org/10.34133/2022/9803780Sun W, Choi I, Stoyanov S, Senkov O, Ponimaskin E, Winter Y, Pakan JMP, Dityatev A. 2021. Context value updating and multidimensional neuronal encoding in the retrosplenial cortex. Nature Communications. 12(1):6045. https://doi.org/10.1038/s41467-021-26301-zDylda E, Pakan JMP. 2021. Visual plasticity: Illuminating the role of the hippocampus in cortical sensory encoding. Current Biology. 31(18):R1087-R1089. https://doi.org/10.1016/j.cub.2021.07.015Dacre J, Colligan M, Clarke T, Ammer JJ, Schiemann J, Chamosa-Pino V, Claudi F, Harston JA, Eleftheriou C, Pakan JMP, et al. 2021. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron. 109(14):2326-2338.e8. https://doi.org/10.1016/j.neuron.2021.05.016Henschke JU, Price AT, Pakan JMP. 2021. Enhanced modulation of cell-type specific neuronal responses in mouse dorsal auditory field during locomotion. Cell Calcium. 96:Article 102390. https://doi.org/10.1016/j.ceca.2021.102390Henschke JU, Pakan JMP. 2020. Disynaptic cerebrocerebellar pathways originating from multiple functionally distinct cortical areas. eLife. 9:1-27. https://doi.org/10.7554/ELIFE.59148Henschke JU, Dylda E, Katsanevaki D, Dupuy N, Currie SP, Amvrosiadis T, Pakan JMP, Rochefort NL. 2020. Reward Association Enhances Stimulus-Specific Representations in Primary Visual Cortex. Current Biology. 30(10):1866-1880.e5. https://doi.org/10.1016/j.cub.2020.03.018Yopak KE, Pakan JMP, Wylie D. 2020. The Cerebellum of Nonmammalian Vertebrates. In Evolutionary Neuroscience. Elsevier. pp. 247-260. https://doi.org/10.1016/B978-0-12-820584-6.00010-6Turtaev S, Leite IT, Altwegg-Boussac T, Pakan JMP, Rochefort NL, Čižmár T. 2018. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light: Science and Applications. 7(1):Article 92. https://doi.org/10.1038/s41377-018-0094-xPakan JMP, Francioni V, Rochefort NL. 2018. Action and learning shape the activity of neuronal circuits in the visual cortex. Current Opinion in Neurobiology. 52:88-97. https://doi.org/10.1016/j.conb.2018.04.020Pakan JMP, Currie SP, Fischer L, Rochefort NL. 2018. The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex. Cell Reports. 24(10):2521-2528. https://doi.org/10.1016/j.celrep.2018.08.010Long RM, Pakan JMP, Graham DJ, Hurd PL, Gutierrez-Ibañez C, Wylie DR. 2018. Modulation of complex spike activity differs between zebrin-positive and -negative Purkinje cells in the pigeon cerebellum. Journal of Neurophysiology. 120(1):250-262. https://doi.org/10.1152/jn.00797.2017Lim L, Pakan JMP, Selten MM, Marques-Smith A, Llorca A, Bae SE, Rochefort NL, Marín O. 2018. Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nature Neuroscience. 21(7):920-931. https://doi.org/10.1038/s41593-018-0162-9Keemink SW, Lowe SC, Pakan JMP, Dylda E, Van Rossum MCW, Rochefort NL. 2018. FISSA: A neuropil decontamination toolbox for calcium imaging signals. Scientific Reports. 8(1):Article 3493. https://doi.org/10.1038/s41598-018-21640-2Dylda E, Pakan JMP, Rochefort NL. 2018. Chronic Two-Photon Calcium Imaging in the Visual Cortex of Awake Behaving Mice. In Handbook of Behavioral Neuroscience. Elsevier B.V. pp. 235-251. (Handbook of Behavioral Neuroscience). https://doi.org/10.1016/B978-0-12-812028-6.00013-6O'Loughlin E, Pakan JMP, Yilmazer-Hanke D, McDermott KW. 2017. Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. Journal of Neuroinflammation. 14(1):Article 212. https://doi.org/10.1186/s12974-017-0981-8Howarth C, Sutherland B, Choi HB, Martin C, Lind BL, Khennouf L, Ledue JM, Pakan JMP, Ko RWY, Ellis-Davies G, et al. 2017. A critical role for astrocytes in hypercapnic vasodilation in brain. Journal of Neuroscience. 37(9):2403-2414. https://doi.org/10.1523/JNEUROSCI.0005-16.2016Pakan JMP, Lowe SC, Dylda E, Keemink SW, Currie SP, Coutts CA, Rochefort NL. 2016. Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex. eLife. 5(AUGUST):Article e14985. https://doi.org/10.7554/eLife.14985Dmitriev RI, Borisov SM, Kondrashina AV, Pakan JMP, Anilkumar U, Prehn JHM, Zhdanov AV, McDermott KW, Klimant I, Papkovsky DB. 2015. Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cellular and Molecular Life Sciences. 72(2):367-381. https://doi.org/10.1007/s00018-014-1673-5Pakan JMP, Graham DJ, Wylie DR. 2014. Climbing fiber projections in relation to Zebrin stripes in the ventral Uvula in Pigeons. Journal of Comparative Neurology. 522(16):3629-3643. https://doi.org/10.1002/cne.23626O'Loughlin EK, Pakan JMP, McDermott KW, Yilmazer-Hanke D. 2014. Expression of neuropeptide Y1 receptors in the amygdala and hippocampus and anxiety-like behavior associated with Ammon's horn sclerosis following intrahippocampal kainate injection in C57BL/6J mice. Epilepsy and Behavior. 37:175-183. https://doi.org/10.1016/j.yebeh.2014.06.033Dmitriev RI, Kondrashina AV, Koren K, Klimant I, Zhdanov AV, Pakan JMP, McDermott KW, Papkovsky DB. 2014. Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomaterials Science. 2(6):853-866. https://doi.org/10.1039/c3bm60272aPakan JMP, McDermott KW. 2014. A method to investigate radial glia cell behavior using two-photon time-lapse microscopy in an ex vivo model of spinal cord development. Frontiers in Neuroanatomy. 8(APR):Article 22. https://doi.org/10.3389/fnana.2014.00022Barry DS, Pakan JMP, McDermott KW. 2014. Radial glial cells: Key organisers in cns development. International Journal of Biochemistry and Cell Biology. 46(1):76-79. https://doi.org/10.1016/j.biocel.2013.11.013Mathew A, Pakan JMP, Collin EC, Wang W, McDermott KW, Fitzgerald U, Reynolds R, Pandit AS. 2013. An ex-vivo multiple sclerosis model of inflammatory demyelination using hyperbranched polymer. Biomaterials. 34(23):5872-5882. https://doi.org/10.1016/j.biomaterials.2013.04.010Barry DS, Pakan JMP, O'Keeffe GW, Mcdermott KW. 2013. The spatial and temporal arrangement of the radial glial scaffold suggests a role in axon tract formation in the developing spinal cord. Journal of Anatomy. 222(2):203-213. https://doi.org/10.1111/joa.12006Chee SSA, Espinoza WAS, Iwaniuk AN, Pakan JMP, Gutiérrez-Ibáñez C, Wylie DR, Hurd PL. 2013. Social status, breeding state, and GnRH soma size in convict cichlids (Cryptoheros nigrofasciatus). Behavioural Brain Research. 237(1):318-324. https://doi.org/10.1016/j.bbr.2012.09.023Wylie DR, Pakan JMP, Huynh H, Graham DJ, Iwaniuk AN. 2012. Distribution of zebrin-immunoreactive Purkinje cell terminals in the cerebellar and vestibular nuclei of birds. Journal of Comparative Neurology. 520(7):1532-1546. https://doi.org/10.1002/cne.22810Wylie DR, Gutierrez-Ibanez C, Graham DJ, Kreuzer MB, Pakan JMP, Iwaniuk AN. 2011. Heterogeneity of parvalbumin expression in the avian cerebellar cortex and comparisons with zebrin II. Neuroscience. 185:73-84. https://doi.org/10.1016/j.neuroscience.2011.04.014Pakan JMP, Graham DJ, Gutiérrez-Ibánez C, Wylie DR. 2011. Organization of the cerebellum: Correlating zebrin immunochemistry with optic flow zones in the pigeon flocculus. Visual Neuroscience. 28(2):163-174. https://doi.org/10.1017/S0952523810000532Iwaniuk AN, Gutierrez-Ibanez C, Pakan JMP, Wylie DR. 2010. Allometric scaling of the tectofugal pathway in birds. Brain, Behavior and Evolution. 75(2):122-137. https://doi.org/10.1159/000311729Pakan JMP, Graham DJ, Wylie DR. 2010. Organization of visual mossy fiber projections and zebrin expression in the pigeon vestibulocerebellum. Journal of Comparative Neurology. 518(2):175-198. https://doi.org/10.1002/cne.22192Wylie DRW, Gutierrez-Ibanez C, Pakan JMP, Iwaniuk AN. 2009. The optic tectum of birds: Mapping our way to understanding visual processing. Canadian Journal of Experimental Psychology. 63(4):328-338. https://doi.org/10.1037/a0016826Iwaniuk AN, Pakan JMP, Gutiérrez-Ibáñez C, Wylie DR. 2009. Expression of calcium-binding proteins in cerebellar- and inferior olivary-projecting neurons in the nucleus lentiformis mesencephali of pigeons. Visual Neuroscience. 26(3):341-347. https://doi.org/10.1017/S0952523809090087Iwaniuk AN, Marzban H, Pakan JMP, Watanabe M, Hawkes R, Wylie DRW. 2009. Compartmentation of the cerebellar cortex of hummingbirds (Aves: Trochilidae) revealed by the expression of zebrin II and phospholipase Cβ4. Journal of Chemical Neuroanatomy. 37(1):55-63. https://doi.org/10.1016/j.jchemneu.2008.10.001Pakan JMP, Wylie DRW. 2008. Congruence of zebrin II expression and functional zones defined by climbing fiber topography in the flocculus. Neuroscience. 157(1):57-69. https://doi.org/10.1016/j.neuroscience.2008.08.062Wylie DRW, Pakan JMP, Gutiérrez-Ibáñez C, Iwaniuk AN. 2008. Expression of calcium-binding proteins in pathways from the nucleus of the basal optic root to the cerebellum in pigeons. Visual Neuroscience. 25(5-6):701-707. https://doi.org/10.1017/S0952523808080772Pakan JMP, Graham DJ, Iwaniuk AN, Wylie DRW. 2008. Differential projections from the vestibular nuclei to the flocculus and uvula-nodulus in pigeons (Columba livia). Journal of Comparative Neurology. 508(3):402-417. https://doi.org/10.1002/cne.21623Wylie DRW, Pakan JMP, Elliott CA, Graham DJ, Iwaniuk AN. 2007. Projections of the nucleus of the basal optic root in pigeons (Columba livia): A comparison of the morphology and distribution of neurons with different efferent projections. Visual Neuroscience. 24(5):691-707. https://doi.org/10.1017/S0952523807070599Pakan JMP, Iwaniuk AN, Wylie DRW, Hawkes R, Marzban H. 2007. Purkinje cell compartmentation as revealed by zebrin II expression in the cerebellar cortex of pigeons (Columba livia). Journal of Comparative Neurology. 501(4):619-630. https://doi.org/10.1002/cne.21266Pakan JMP, Krueger K, Kelcher E, Cooper S, Todd KG, Wylie DRW. 2006. Projections of the nucleus lentiformis mesencephali in pigeons (Columba livia): A comparison of the morphology and distribution of neurons with different efferent projections. Journal of Comparative Neurology. 495(1):84-99. https://doi.org/10.1002/cne.20855Winship IR, Pakan JMP, Todd KG, Wong-Wylie DR. 2006. A comparison of ventral tegmental neurons projecting to optic flow regions of the inferior olive vs. the hippocampal formation. Neuroscience. 141(1):463-473. https://doi.org/10.1016/j.neuroscience.2006.03.057Pakan JMP, Wylie DRW. 2006. Two optic flow pathways from the pretectal nucleus lentiformis mesencephali to the cerebellum in pigeons (Columba livia). Journal of Comparative Neurology. 499(5):732-744. https://doi.org/10.1002/cne.21108Pakan JMP, Todd KG, Nguyen AP, Winship IR, Hurd PL, Jantzie LL, Wylie DRW. 2005. Inferior olivary neurons innervate multiple zones of the flocculus in pigeons (Columba livia). Journal of Comparative Neurology. 486(2):159-168. https://doi.org/10.1002/cne.20523 - Third party funds
Third party funds
2025 - 2028 (DFG)
SFB 1436 TP B06: Der Gebrauch neuronaler Ressourcen für die zeitliche Aufmerksamkeit über mehrere Sinne2024 - 2028 (WGL)
Leibniz-Professorinnenprogramm "Keeping the brain engaged"2025 - 2027 (DFG)
SynAGE Teilprojekt D2: Synaptic changes and aberrant memory-related network excitability in hippocampal-posterior cortical circuits with ageing

