LIN Staff

Dr. Liudmila Sosulina

Scientist

Cellular Neuroscience

Leibniz Institute for Neurobiology
Brenneckestr. 6
39118 Magdeburg
Germany
Phone: +49 391 6263 93311
Email: Liudmila.Sosulina@lin-magdeburg.de

  • Publications

    Publications

    Grochowska KM, Gomes GM, Raman R, Kaushik R, Sosulina L, Kaneko H, Oelschlegel AM, Yuanxiang P, Reyes-Resina I, Bayraktar G, et al. 2023. Jacob-induced transcriptional inactivation of CREB promotes Aβ-induced synapse loss in Alzheimer's disease. The EMBO journal. Article e112453. https://doi.org/10.15252/embj.2022112453

    Sosulina L, Mittag M, Geis H-R, Hoffmann K, Klyubin I, Qi Y, Steffen J, Friedrichs D, Henneberg N, Fuhrmann F, et al. 2021. Hippocampal hyperactivity in a rat model of Alzheimer's disease. Journal of Neurochemistry. 157(6):2128-2144. https://doi.org/10.1111/jnc.15323

    Korvasová K, Ludwig F, Kaneko H, Sosulina L, Tetzlaff T, Remy S, Mikulovic S. 2021. Locomotion induced by medial septal glutamatergic neurons is linked to intrinsically generated persistent firing. bioRxiv. https://doi.org/10.1101/2021.04.23.441122

    Bertan F, Wischhof L, Sosulina L, Mittag M, Dalügge D, Fornarelli A, Gardoni F, Marcello E, Di Luca M, Fuhrmann M, et al. 2021. Correction: Loss of Ryanodine Receptor 2 impairs neuronal activity-dependent remodeling of dendritic spines and triggers compensatory neuronal hyperexcitability (Cell Death & Differentiation, (2020), 27, 12, (3354-3373), 10.1038/s41418-020-0584-2). Cell Death and Differentiation. 28(3):1134. https://doi.org/10.1038/s41418-020-00605-x

    Bertan F, Wischhof L, Sosulina L, Mittag M, Dalügge D, Fornarelli A, Gardoni F, Marcello E, Di Luca M, Fuhrmann M, et al. 2020. Loss of Ryanodine Receptor 2 impairs neuronal activity-dependent remodeling of dendritic spines and triggers compensatory neuronal hyperexcitability. Cell Death and Differentiation. 27(12):3354-3373. https://doi.org/10.1038/s41418-020-0584-2

    Justus D, Dalügge D, Bothe S, Fuhrmann F, Hannes C, Kaneko H, Friedrichs D, Sosulina L, Schwarz I, Elliott DA, et al. 2017. Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nature Neuroscience. 20(1):16-19. https://doi.org/10.1038/nn.4447

    Sosulina L, Strippel C, Romo-Parra H, Walter AL, Kanyshkova T, Sartori SB, Lange MD, Singewald N, Pape HC. 2015. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. Journal of Neurophysiology. 114(4):2500-2508. https://doi.org/10.1152/jn.00883.2014

    Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuhrmann M, Remy S. 2015. Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. Neuron. 86(5):1253-1264. https://doi.org/10.1016/j.neuron.2015.05.001

    Romo-Parra H, Blaesse P, Sosulina L, Pape HC. 2015. Neurosteroids increase tonic GABAergic inhibition in the lateral section of the central amygdala in mice. Journal of Neurophysiology. 113(9):3421-3431. https://doi.org/10.1152/jn.00045.2015

    Lange MD, Jüngling K, Paulukat L, Vieler M, Gaburro S, Sosulina L, Blaesse P, Sreepathi HK, Ferraguti F, Pape HC. 2014. Glutamic acid decarboxylase 65: A link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization. Neuropsychopharmacology. 39(9):2211-2220. https://doi.org/10.1038/npp.2014.72

    Jüngling K, Liu X, Lesting J, Coulon P, Sosulina L, Reinscheid RK, Pape HC. 2012. Activation of neuropeptide S-expressing neurons in the locus coeruleus by corticotropin-releasing factor. Journal of Physiology. 590(16):3701-3717. https://doi.org/10.1113/jphysiol.2011.226423

    Sangha S, Ilenseer J, Sosulina L, Lesting J, Pape HC. 2012. Differential regulation of glutamic acid decarboxylase gene expression after extinction of a recent memory vs. intermediate memory. Learning and Memory. 19(5):194-200. https://doi.org/10.1101/lm.025874.112

    Graebenitz S, Lesting J, Sosulina L, Seidenbecher T, Pape HC. 2010. Alteration of NMDA receptor-mediated synaptic interactions in the lateral amygdala associated with seizure activity in a mouse model of chronic temporal lobe epilepsy. Epilepsia. 51(9):1754-1762. https://doi.org/10.1111/j.1528-1167.2010.02561.x

    Sosulina L, Graebenitz S, Pape HC. 2010. GABAergic interneurons in the mouse lateral amygdala: A classification study. Journal of Neurophysiology. 104(2):617-626. https://doi.org/10.1152/jn.00207.2010

    Sosulina L, Schwesig G, Seifert G, Pape HC. 2008. Neuropeptide Y activates a G-protein-coupled inwardly rectifying potassium current and dampens excitability in the lateral amygdala. Molecular and Cellular Neuroscience. 39(3):491-498. https://doi.org/10.1016/j.mcn.2008.08.002

    Jüngling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD, Okamura N, Duangdao DM, Xu YL, Reinscheid RK, et al. 2008. Neuropeptide S-Mediated Control of Fear Expression and Extinction: Role of Intercalated GABAergic Neurons in the Amygdala. Neuron. 59(2):298-310. https://doi.org/10.1016/j.neuron.2008.07.002

    Meis S, Munsch T, Sosulina L, Pape HC. 2007. Postsynaptic mechanisms underlying responsiveness of amygdaloid neurons to cholecystokinin are mediated by a transient receptor potential-like current. Molecular and Cellular Neuroscience. 35(2):356-367. https://doi.org/10.1016/j.mcn.2007.03.012

    Sosulina L, Meis S, Seifert G, Steinhäuser C, Pape HC. 2006. Classification of projection neurons and interneurons in the rat lateral amygdala based upon cluster analysis. Molecular and Cellular Neuroscience. 33(1):57-67. https://doi.org/10.1016/j.mcn.2006.06.005

    Meis S, Sosulina L, Schulz S, Höllt V, Pape HC. 2005. Mechanisms of somatostatin-evoked responses in neurons of the rat lateral amygdala. European Journal of Neuroscience. 21(3):755-762. https://doi.org/10.1111/j.1460-9568.2005.03922.x
Share this page: