LIN Staff

Prof. Dr. Peter Heil

Head of Working Group

Systems Physiology of Learning

Leibniz Institute for Neurobiology
Brenneckestr. 6
39118 Magdeburg
Germany
Phone: +49 391 6263 94441
Email: Peter.Heil@lin-magdeburg.de

  • Publications

    Publications

    Heil P, Mohamed ESI, Matysiak A. 2021. Towards a unifying basis of auditory thresholds: Thresholds for multicomponent stimuli. Hearing Research. 410:Article 108349. https://doi.org/10.1016/j.heares.2021.108349

    Peterson AJ, Heil P. 2021. A simplified physiological model of rate-level functions of auditory-nerve fibers. Hearing Research. 406:Article 108258. https://doi.org/10.1016/j.heares.2021.108258

    Heil P. 2021. Comparing and modeling absolute auditory thresholds in an alternative-forced-choice and a yes-no procedure. Hearing Research. 403:Article 108164. https://doi.org/10.1016/j.heares.2020.108164

    Peterson AJ, Heil P. 2020. Phase locking of auditory-nerve fibers: the role of lowpass filtering by hair cells. Journal of Neuroscience. 40(24):4700-4714. https://doi.org/10.1523/JNEUROSCI.2269-19.2020

    Rufener KS, Kauk J, Ruhnau P, Repplinger S, Heil P, Zaehle T. 2020. Inconsistent effects of stochastic resonance on human auditory processing. Scientific Reports. 10(1):Article 6419. https://doi.org/10.1038/s41598-020-63332-w

    Heil P, Matysiak A. 2020. Absolute auditory threshold: Testing the absolute. European Journal of Neuroscience. 51(5):1224-1233. https://doi.org/10.1111/ejn.13765

    Heil P, Peterson AJ. 2019. Nelson's notch in the rate-level functions of auditory-nerve fibers might be caused by PIEZO2-mediated reverse-polarity currents in hair cells. Hearing Research. 381:Article 107783. https://doi.org/10.1016/j.heares.2019.107783

    Peterson AJ, Heil P. 2019. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope. Journal of Neuroscience. 39(21):4077-4099. https://doi.org/10.1523/JNEUROSCI.1801-18.2019

    Huang Y, Heil P, Brosch M. 2019. Associations between sounds and actions in early auditory cortex of nonhuman primates. eLife. 8:Article e43281. https://doi.org/10.7554/eLife.43281

    Peterson AJ, Huet A, Bourien J, Puel JL, Heil P. 2018. Recovery of auditory-nerve-fiber spike amplitude under natural excitation conditions. Hearing Research. 370:248-263. https://doi.org/10.1016/j.heares.2018.08.007

    Peterson AJ, Heil P. 2018. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hearing Research. 363:1-27. https://doi.org/10.1016/j.heares.2017.09.005

    Heil P, Matysiak A, Neubauer H. 2017. A probabilistic Poisson-based model accounts for an extensive set of absolute auditory threshold measurements. Hearing Research. 353:135-161. https://doi.org/10.1016/j.heares.2017.06.011

    Friedrich B, Heil P. 2017. Onset-duration matching of acoustic stimuli revisited: Conventional arithmetic vs. proposed geometric measures of accuracy and precision. Frontiers in Psychology. 7(JAN):Article 2013. https://doi.org/10.3389/fpsyg.2016.02013

    Heil P, Peterson AJ. 2017. Spike timing in auditory-nerve fibers during spontaneous activity and phase locking. Synapse. 71(1):5-36. https://doi.org/10.1002/syn.21925

    Huang Y, Matysiak A, Heil P, König R, Brosch M. 2016. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates. eLife. 5(JULY):Article e15441. https://doi.org/10.7554/eLife.15441

    Heil P, Peterson AJ. 2015. Basic response properties of auditory nerve fibers: a review. Cell and Tissue Research. 361(1):129-158. https://doi.org/10.1007/s00441-015-2177-9

    Budinger E, Brechmann A, Brosch M, Heil P, König R, Ohl FW, Scheich H. 2015. Auditory cortex 2014 - towards a synthesis of human and animal research. European Journal of Neuroscience. 41(5):515-517. https://doi.org/10.1111/ejn.12832

    König R, Matysiak A, Kordecki W, Sieluzycki C, Zacharias N, Heil P. 2015. Averaging auditory evoked magnetoencephalographic and electroencephalographic responses: A critical discussion. European Journal of Neuroscience. 41(5):631-640. https://doi.org/10.1111/ejn.12833

    Deike S, Heil P, Böckmann-Barthel M, Brechmann A. 2015. Decision making and ambiguity in auditory stream segregation. Frontiers in Neuroscience. 9(JUL):Article 266. https://doi.org/10.3389/fnins.2015.00266

    Peterson AJ, Irvine DRF, Heil P. 2014. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers. Journal of Neuroscience. 34(45):15097-15109. https://doi.org/10.1523/JNEUROSCI.0903-14.2014

    Heil P. 2014. Auditory Nerve Response, Afferent Signals. In Encyclopedia of Computational Neuroscience. New York: Springer. pp. 1-3. https://doi.org/I 10.1007/978-1-4614-7320-6_424-6

    Heil P. 2014. Towards a unifying basis of auditory thresholds: Binaural summation. JARO - Journal of the Association for Research in Otolaryngology. 15(2):219-234. https://doi.org/10.1007/s10162-013-0432-x

    Matysiak A, Kordecki W, Sieluzycki C, Zacharias N, Heil P, König R. 2013. Variance stabilization for computing and comparing grand mean waveforms in MEG and EEG. Psychophysiology. 50(7):627-639. https://doi.org/10.1111/psyp.12047

    Pohl NU, Slabbekoorn H, Neubauer H, Heil P, Klump GM, Langemann U. 2013. Why longer song elements are easier to detect: Threshold level-duration functions in the Great Tit and comparison with human data. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 199(3):239-252. https://doi.org/10.1007/s00359-012-0789-z

    Heil P, Verhey JL, Zoefel B. 2013. Modelling detection thresholds for sounds repeated at different delays. Hearing Research. 296:83-95. https://doi.org/10.1016/j.heares.2012.12.002

    Heil P, Neubauer H, Tetschke M, Irvine DRF. 2013. A probabilistic model of absolute auditory thresholds and its possible physiological basis. In Advances in Experimental Medicine and Biology. pp. 21-29. (Advances in experimental medicine and biology). https://doi.org/10.1007/978-1-4614-1590-9_3

    Zoefel B, Heil P. 2013. Detection of near-threshold sounds is independent of eeg phase in common frequency bands. Frontiers in Psychology. 4(MAY):Article Article 262. https://doi.org/10.3389/fpsyg.2013.00262

    Zacharias N, König R, Heil P. 2012. Stimulation-history effects on the M100 revealed by its differential dependence on the stimulus onset interval. Psychophysiology. 49(7):909-919. https://doi.org/10.1111/j.1469-8986.2012.01370.x

    Budinger E, Heil P. 2012. Anatomy of the auditory cortex. In Listening to Speech: An Auditory Perspective. Taylor & Francis Group. pp. 91-113. https://doi.org/10.4324/9780203933107

    Deike S, Heil P, Böckmann-Barthel M, Brechmann A. 2012. The build-up of auditory stream segregation: A different perspective. Frontiers in Psychology. 3(OCT):Article Article 461. https://doi.org/10.3389/fpsyg.2012.00461

    Heil P, Neubauer H, Irvine DRF. 2011. An improved model for the rate-level functions of auditory-nerve fibers. Journal of Neuroscience. 31(43):15424-15437. https://doi.org/10.1523/JNEUROSCI.1638-11.2011

    Zacharias N, Sieluzycki C, Kordecki W, König R, Heil P. 2011. The M100 component of evoked magnetic fields differs by scaling factors: Implications for signal averaging. Psychophysiology. 48(8):1069-1082. https://doi.org/10.1111/j.1469-8986.2011.01183.x

    Brechmann A, Brosch M, Budinger E, Heil P, König R, Ohl F, Scheich H. 2011. Auditory cortex - Current concepts in human and animal research. Hearing Research. 271(1-2):1-2. https://doi.org/10.1016/j.heares.2010.10.016

    Heil P, Neubauer H, Irvine DRF. 2010. A new model for the shapes of rate-level functions of auditory-nerve fibers. In Proceedings of the 20th International Congress on Acoustics. pp. 3156-3163.

    Zacharias N, Sieluzycki C, Matysiak MA, König R, Heil P. 2010. Relevant observations for averaging stimulus evoked magnetic fields across trials and across subjects. In 17th International Conference on Biomagnetism Advances in Biomagnetism. pp. 179-182. https://doi.org/10.1007/978-3-642-12197-5_39

    Heil P, Neubauer H. 2010. Summing across different active zones can explain the quasi-linear Ca 2+-dependencies of exocytosis by receptor cells. Frontiers in Synaptic Neuroscience. 2(NOV):1-15. https://doi.org/10.3389/fnsyn.2010.00148

    Neubauer H, Köppl C, Heil P. 2009. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): Analyses of interspike interval distributions. Journal of Neurophysiology. 101(6):3169-3191. https://doi.org/10.1152/jn.90779.2008

    Neubauer H, Heil P. 2008. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers. Brain Research. 1220:208-223. https://doi.org/10.1016/j.brainres.2007.08.081

    König R, Sieluzycki C, Simserides C, Heil P, Scheich H. 2008. Effects of the task of categorizing FM direction on auditory evoked magnetic fields in the human auditory cortex. Brain Research. 1220:102-117. https://doi.org/10.1016/j.brainres.2008.02.086

    Heil P, Neubauer H, Brown M, Irvine DRF. 2008. Towards a unifying basis of auditory thresholds: Distributions of the first-spike latencies of auditory-nerve fibers. Hearing Research. 238(1-2):25-38. https://doi.org/10.1016/j.heares.2007.09.014

    Heil P, Neubauer H, Irvine DRF, Brown M. 2007. Spontaneous activity of auditory-nerve fibers: Insights into stochastic processes at ribbon synapses. Journal of Neuroscience. 27(31):8457-74. https://doi.org/10.1523/JNEUROSCI.1512-07.2007

    Budinger E, Heil P, Hess A, Scheich H. 2006. Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems. Neuroscience. 143(4):1065-1083. https://doi.org/10.1016/j.neuroscience.2006.08.035

    Tiefenau A, Neubauer H, von Specht H, Heil P. 2006. Correcting for false alarms in a simple reaction time task. Brain Research. 1122(1):99-115. https://doi.org/10.1016/j.brainres.2006.09.004

    Heil P, Neubauer H, Tiefenau A, Von Specht H. 2006. Comparison of absolute thresholds derived from an adaptive forced-choice procedure and from reaction probabilities and reaction times in a simple reaction time paradigm. JARO - Journal of the Association for Research in Otolaryngology. 7(3):279-298. https://doi.org/10.1007/s10162-006-0042-y

    König R, Heil P, Budinger E, Scheich H 2005. The auditory cortex: Towards a synthesis of human and animal research. Lawrence Earlbaum, New Jersey, USA. 493 p. https://doi.org/10.4324/9781410613066

    Heil P, Neubauer H. 2005. Toward a unifying basis of auditory thresholds. In The Auditory Cortex: A Synthesis of Human and Animal Research. Routledge Taylor & Francis Group. pp. 207-222. https://doi.org/10.4324/9781410613066

    Budinger E, Heil P. 2005. Anatomy of the auditory cortex. In Listening to Speech: An Auditory Perspective. Lawrence Earlbaum, New Jersey, USA. pp. 91-113.

    Neubauer H, Heil P. 2004. Towards a unifying basis of auditory thresholds: The effects of hearing loss on temporal integration reconsidered. JARO - Journal of the Association for Research in Otolaryngology. 5(4):436-458. https://doi.org/10.1007/s10162-004-5031-4

    Heil P. 2004. First-spike latency of auditory neurons revisited. Current Opinion in Neurobiology. 14(4):461-467. https://doi.org/10.1016/j.conb.2004.07.002

    Heil P, Neubauer H. 2004. Auditory thresholds re-visited. Pressnitzer D, de Cheveigne A, McAdams S, Collet L, editors. In Auditory Signal Processing: Physiology, Psychoacoustics, and Models. Springer. pp. 454-470.

    Heil P, Neubauer H. 2004. New insights into absolute thresholds of normal and hearing-impaired ears. Zeitschrift für Audiologie. 43(4):188-195.

    Heil P. 2003. Coding of temporal onset envelope in the auditory system. Speech Communication. 41(1):123-134. https://doi.org/10.1016/S0167-6393(02)00099-7

    Heil P, Neubauer H. 2003. A unifying basis of auditory thresholds based on temporal summation. Proceedings of the National Academy of Sciences of the United States of America. 100(10):6151-6156. https://doi.org/10.1073/pnas.1030017100

    Bronchti G, Heil P, Sadka R, Hess A, Scheich H, Wollberg Z. 2002. Auditory activation of 'visual' cortical areas in the blind mole rat (Spalax ehrenbergi). European Journal of Neuroscience. 16(2):311-329. https://doi.org/10.1046/j.1460-9568.2002.02063.x

    Heil P. 2001. Representation of sound onsets in the auditory system. Audiology and Neuro-Otology. 6(4):167-172. https://doi.org/10.1159/000046826

    Heil P, Neubauer H. 2001. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers. Journal of Neuroscience. 21(18):7404-7415. https://doi.org/10.1523/jneurosci.21-18-07404.2001

    Biermann S, Heil P. 2000. Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex. Journal of Neurophysiology. 84(5):2426-2439. https://doi.org/10.1152/jn.2000.84.5.2426

    Budinger E, Heil P, Scheich H. 2000. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience. 12(7):2425-2451. https://doi.org/10.1046/j.1460-9568.2000.00142.x

    Budinger E, Heil P, Scheich H. 2000. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. European Journal of Neuroscience. 12(7):2452-2474. https://doi.org/10.1046/j.1460-9568.2000.00143.x

    Hess A, Stiller D, Kaulisch T, Heil P, Scheich H. 2000. New insights into the hemodynamic blood oxygenation level-dependent response through combination of functional magnetic resonance imaging and optical recording in gerbil barrel cortex. Journal of Neuroscience. 20(9):3328-3338. https://doi.org/10.1523/jneurosci.20-09-03328.2000

    Hess A, Stiller D, Heil P. 1999. On the BOLD effect: New insights into the hemodynamic response through combination of fMRI and Optical imaging in the barrel field. NeuroImage. 9(6 PART II).

    Heil P. 1998. Further observations on the threshold model of latency for auditory neurons. Behavioural Brain Research. 95(2):233-236. https://doi.org/10.1016/S0166-4328(98)00044-8

    Heil P. 1998. Neuronal coding of interaural transient envelope disparities. European Journal of Neuroscience. 10(9):2831-2847. https://doi.org/10.1111/j.1460-9568.1998.00293.x

    Heil P, Irvine DRF. 1998. Functional specialization in auditory cortex: Responses to frequency- modulated stimuli in the cat's posterior auditory field. Journal of Neurophysiology. 79(6):3041-3059. https://doi.org/10.1152/jn.1998.79.6.3041

    Heil P, Irvine DRF. 1998. The posterior field P of cat auditory cortex: Coding of envelope transients. Cerebral Cortex. 8(2):125-141. https://doi.org/10.1093/cercor/8.2.125

    Schulze H, Ohl FW, Heil P, Scheich H. 1997. Field-specific responses in the auditory cortex of the unanaesthetized Mongolian gerbil to tones and slow frequency modulations. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 181(6):573-589. https://doi.org/10.1007/s003590050141

    Langner G, Sams M, Heil P, Schulze H. 1997. Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: Evidence from magnetoencephalography. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 181(6):665-676. https://doi.org/10.1007/s003590050148

    Heil P, Irvlne DRF. 1997. First-spike timing of auditory-nerve fibers and comparison with auditory cortex. Journal of Neurophysiology. 78(5):2438-2454. https://doi.org/10.1152/jn.1997.78.5.2438

    Heil P. 1997. Auditory cortical onset responses revisited. I. First-spike timing. Journal of Neurophysiology. 77(5):2616-2641. https://doi.org/10.1152/jn.1997.77.5.2616

    Heil P. 1997. Auditory cortical onset responses revisited. II. Response strength. Journal of Neurophysiology. 77(5):2642-2660. https://doi.org/10.1152/jn.1997.77.5.2642

    Heil P. 1997. Aspects of temporal processing of FM stimuli in primary auditory cortex. Acta Oto-Laryngologica, Supplement. 532(532):99-102.

    Heil P, Irvine DRF. 1996. On determinants of first-spike latency in auditory cortex. NeuroReport. 7(18):3073-3076. https://doi.org/10.1097/00001756-199611250-00056

    Heil P, Schulze H, Langner G. 1995. Ontogenetic development of periodicity coding in the inferior colliculus of the Mongolian gerbil. Auditory Neuroscience. 1(4):363-383.

    Heil P, Rajan R, Irvine DRF. 1994. Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hearing Research. 76(1-2):188-202. https://doi.org/10.1016/0378-5955(94)90099-X

    Rajan R, Irvine DRF, Wise LZ, Heil P. 1993. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. Journal of Comparative Neurology. 338(1):17-49. https://doi.org/10.1002/cne.903380104

    Thomas H, Tillein J, Heil P, Scheich H. 1993. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields. European Journal of Neuroscience. 5(7):882-897. https://doi.org/10.1111/j.1460-9568.1993.tb00940.x

    Scheich H, Heil P, Langner G. 1993. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus) II. Tonotopic 2-deoxyglucose. European Journal of Neuroscience. 5(7):898-914. https://doi.org/10.1111/j.1460-9568.1993.tb00941.x

    Heil P, Langner G, Scheich H. 1992. Processing of frequency-modulated stimuli in the chick auditory cortex analogue: evidence for topographic representations and possible mechanisms of rate and directional sensitivity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 171(5):583-600. https://doi.org/10.1007/BF00194107

    Heil P, Rajan R, Irvine DRF. 1992. Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I. Effects of variation of stimulus parameters. Hearing Research. 63(1-2):108-134. https://doi.org/10.1016/0378-5955(92)90080-7

    Heil P, Rajan R, Irvine DRF. 1992. Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. II: Organization of response properties along the 'isofrequency' dimension. Hearing Research. 63(1-2):135-156. https://doi.org/10.1016/0378-5955(92)90081-W

    Heil P, Scheich H. 1992. Spatial representation of frequency-modulated signals in the tonotopically organized auditory cortex analogue of the chick. Journal of Comparative Neurology. 322(4):548-565. https://doi.org/10.1002/cne.903220409

    Heil P, Scheich H. 1992. Postnatal shift of tonotopic organization in the chick auditory cortex analogue. NeuroReport. 3(5):381-384. https://doi.org/10.1097/00001756-199205000-00001

    Heil P, Bronchti G, Wollberg Z, Scheich H. 1991. Invasion of visual cortex by the auditory system in the naturally blind mole rat. NeuroReport. 2(12):735-738. https://doi.org/10.1097/00001756-199112000-00001

    Heil P, Scheich H. 1991. Functional organization of the avian auditory cortex analogue. II. Topographic distribution of latency. Brain Research. 539(1):121-125. https://doi.org/10.1016/0006-8993(91)90693-P

    Heil P, Scheich H. 1991. Functional organization of the avian auditory cortex analogue. I. Topographic representation of isointensity bandwidth. Brain Research. 539(1):110-120. https://doi.org/10.1016/0006-8993(91)90692-O

    Bronchti G, Heil P, Scheich H, Wollberg Z. 1989. Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): I. 2-Deoxyglucose study of subcortical centers. Journal of Comparative Neurology. 284(2):253-274. https://doi.org/10.1002/cne.902840209

    Heil P, Scheich H. 1986. Effects of unilateral and bilateral cochlea removal on 2-deoxyglucose patterns in the chick auditory system. Journal of Comparative Neurology. 252(3):279-301. https://doi.org/10.1002/cne.902520302

    Heil P, Scheich H. 1985. Quantitative analysis and two-dimensional reconstruction of the tonotopic organization of the auditory field L in the chick from 2-deoxyglucose data. Experimental Brain Research. 58(3):532-543. https://doi.org/10.1007/BF00235869
  • Third party funds

    Third party funds

    2016 - 2020 (DFG)
    Mechanismen der Phasenkopplung von Hörnervenfasern: ein Modellierungsansatz

    2016 - 2017 (DFG)
    "Neuronale Korrelate des sensorischen Arbeitsgedächtnisses im Hörcortex von Menschen und Affen"

    2013 - 2017 (DFG)
    SFB TRR 31/ A06: Vorverarbeitung und Erkennung der zeitlichen Strukturen akustischer Signale im Hörsystem

    2013 - 2016 (DFG)
    Mechanisms of the phase - locking of auditory nerve fibers: a modeling approach

    2012 - 2015 (DFG)
    Neuronal correlates of sensory working memory in the auditory cortex of humans an monkeys

Share this page: